Bi-goal evolution for many-objective optimization problems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bi-goal evolution for many-objective optimization problems

This paper presents a meta-objective optimization approach, called Bi-Goal Evolution (BiGE), to deal with multi-objective optimization problems with many objectives. In multi-objective optimization, it is generally observed that 1) the conflict between proximity and diversity requirements is aggravated with the increase of the number of objectives and 2) the Pareto dominance loses its effective...

متن کامل

A New Algorithm for Constructing the Pareto Front of Bi-objective Optimization Problems

Here, scalarization techniques for multi-objective optimization problems are addressed. A new scalarization approach, called unified Pascoletti-Serafini approach, is utilized and a new algorithm to construct the Pareto front of a given bi-objective optimization problem is formulated. It is shown that we can restrict the parameters of the scalarized problem. The computed efficient points provide...

متن کامل

Using Different Many-Objective Techniques in Particle Swarm Optimization for Many Objective Problems: An Empirical Study

Pareto based Multi-Objective Evolutionary Algorithms face several problems when dealing with a large number of objectives. In this situation, almost all solutions become nondominated and there is no pressure towards the Pareto Front. The use of Particle Swarm Optimization algorithm (PSO) in multi-objective problems grew in recent years. The PSO has been found very efficient in solve Multi-Objec...

متن کامل

A New Evolutionary Decision Theory for Many-Objective Optimization Problems

In this paper the authors point out that the Pareto Optimality is unfair, unreasonable and imperfect for Many-objective Optimization Problems (MOPs) underlying the hypothesis that all objectives have equal importance. The key contribution of this paper is the discovery of the new definition of optimality called ε-optimality for MOP that is based on a new conception, so called ε-dominance, which...

متن کامل

Machine learning based decision support for many-objective optimization problems

Multiple Criteria Decision-Making (MCDM) based Multi-objective Evolutionary Algorithms (MOEAs) are increasingly becoming popular for dealing with optimization problems with more than three objectives, commonly termed as many-objective optimization problems (MaOPs). These algorithms elicit preferences from a single or multiple Decision Makers (DMs), a priori or interactively, to guide the search...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Artificial Intelligence

سال: 2015

ISSN: 0004-3702

DOI: 10.1016/j.artint.2015.06.007